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Stability of periodic paraxial optical systems
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Based on ray propagation of paraxial geometric optics, we show that any stable periodic paraxial system or
optical resonator becomes unstable in presence of stochastic perturbations of the the periodic sequence along
which the rays are propagated. The exponential divergence with distance of ray displacements from the optical
axis bears a close connection to the phenomenon of Anderson localization in disordered systems. The stability
of the periodic focusing system is restored when finite aperture effects are accounted for and complex paraxial
optics is used to describe wave propagation.
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The study of the propagation of paraxial rays and wa
through periodic focusing systems plays an important role
the understanding of basic properties of optical resonat
laser beams, and graded-index fibers. An extended litera
exists indeed on this subject~for an early review see, fo
instance, Ref.@1#!, and detailed treatments, based on
well-known ABCD matrix propagation method of paraxia
ray and wave optics, can be found nowadays in many t
books~see, for instance, Refs.@2#, @3#!. In the framework of
the geometric ray optics, periodic paraxial systems w
purely real ray matrices are classified as either stable or
stable, depending on the value of the semitrace (A1D)/2 of
the ABCD matrix for the single sequence. A system is sta
for uA1Du,2; in this case the rays in the system oscilla
back and forth about the optical axis, and the maximum
cursions of ray displacementr n and ray sloper n8 from optical
axis are bounded. Conversely, a system withuA1Du>2 is
unstable and rays become more and more dispersed from
optical axis, the further they pass through the seque
Through this simple classification scheme, the focus
properties of a stable system may be, nevertheless, dr
cally modified when effects of perturbations of optical e
ments, albeit small, are taken into account. In particular
was shown that misalignment effects of the optical eleme
in a periodic system may lead to secular growth of ray d
placement from optical axis during propagation, making
system unstable@3–5#. This circumstance has been esp
cially investigated in case of continuous lensguides that
scribe, e.g., curved or tilted graded-index fibers@3,5#. Even
in the absence of misalignment effects, it was recently sho
@6# that periodic or quasiperiodicperturbations ofABCD
matrix elements in a periodic paraxial stable system can
to secular growth of ray displacements owing to a parame
resonance effect.
In this paper, we study the effects of stochastic perturbati
of ABCD matrix elements in a periodic paraxial stable sy
tem and show that, owing to a rather general phenome
analogous to Anderson localization in disordered syste
@7,8#, the Lyapunov growth rate of ray displacement is po
tive, which is a signature of instability. Under a differe
viewpoint, the dynamics of ray propagation as ruled
paraxialABCD ray matrices turns out to be analogous to th
of a periodically kicked harmonic oscillator, and the instab
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ity induced by the disorder thus corresponds to divergenc
trajectories of the stochastic Hamiltonian system@9–11#.
When the effects of soft~Gaussian! apertures are taken int
consideration and complex paraxial wave propagation is c
sidered, it is shown that the field remains confined and os
lates around the perturbationally stable eigenmode of the
quence.
We consider ray and wave propagation through a disc
periodic focusing system composed of a periodic and alig
sequence, at planesz1 ,z2 ,...,zn ,..., of a geometrically
stable optical system, consisting of several paraxial elem
~such as lenses, spherical dielectric interfaces, free-sp
propagation, ducts, etc.!, with an unperturbed ray matrix
ABCD. A notable example is represented by an optical re
nator, where the back and forth ray propagation between
two cavity mirrors mimics the propagation through an ite
ated periodic focusing system that repeats indefinitely
sequence of optical elements inside the resonator. As we
low for small perturbations of matrix parameters from o
block to the next, we denote byAn , Bn , Cn , andDn , the
matrix elements of thenth block in the chain and assume th
they are uniformly bounded with indexn @see Fig. 1~a!#. In
case of ray propagation inside an optical resonator, the in

FIG. 1. ~a! Schematic representation of ray propagation throu
a periodic optical system with modulated parameters.~b! An ex-
ample of a disordered periodic lensguide composed of a sequ
of lenses of focal lengthf placed at distancesLn5L1en . The con-
dition L,4 f is assumed to ensure geometric stability of the unp
turbed periodic lensguide.
©2002 The American Physical Society01-1
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n denotes the cavity round-trip number, and perturbation
matrix elements may account for time variation of resona
parameters, such as moving mirrors or time-varying len
In the following, we will focus our attention mainly on th
case where the matrix elementC along the chain is not per
turbed; this case applies, for instance, to any repeated
quence of aligned optical elements, including lenses, die
tric interfaces, and ducts that are irregularly spaced along
chain. A notable example, shown in Fig. 1~b!, is that of a
chain of lenses, of focal lengthf, irregularly spaced at dis
tancesLn5L1en , whereL is the mean separation distan
anden are stochastic variables with zero mean. Light pro
gation through the chain can be described in terms of ei
ray or wave propagation by use of the well-known ray mat
techniques and generalized Huygens integrals@1–3#. Let us
first consider the simplest ray propagation based on geo
ric optics rules; this approach may be used whenever
matrix elements along the chain are real valued, i.e., w
transverse gain or loss variations in the system are ne
gible. In this case, any light ray propagating along the ch
is characterized by its ray displacementr n and ray sloper n8
from the optical axis at planez5zn @see Fig. 1~a!#; in the
paraxial approximation, these evolve according to the sim
linear mapping rule@1–3#

H r n115Anr n1Bnr n8 ,

r n118 5Cnr n1Dnr n8.
~1!

The optical sequence is said to begeometrically stableif any
initial paraxial ray propagates along the chain remain
close the optical axis, i.e., if Lim Supn→`ur nu,ur n8u,`. For
the unperturbed periodic chain, the geometric stability cr
rion is readily derived by, e.g., direct calculation of the m
trix elements for the cascading ofn blocks using Sylvester’s
theorem and by an inspection of the asymptotic behavio
matrix elements asn goes to infinity@1#; it then turns out that
stability for the unperturbed periodic chain is ensured, p
vided that the anglef0 , defined by the relation cosf05(A
1D)/2, is real valued, i.e., foruA1Du,2. To study the sta-
bility for the perturbed periodic chain, it is worth deriving
second-order linear difference equation describing propa
tion of the ray sloper n8 solely; assumingCn to be indepen-
dent ofn and using the identityAnDn2BnCn51, from Eq.
~1! one readily obtains

r n118 1r n218 52 cosf0r n81e f ~n!r n8 . ~2!

where e f (n)[An212A1Dn2D accounts for the disorde
in the chain. The ray displacementr n can then be calculated
if needed, according to r n5(r n118 2Dnr n8)/C. The
asymptotic growth rate for the ray sloper n8 can be derived by
evaluation of the Lyapunov exponentl for the discrete equa
tion ~2!, which is given by

l5 lim
n→`

1
2n ln~r n1182 1r n8

2!. ~3!

The properties of the discrete equation~2! in presence of
stochastic disordere f (n) has been studied by several autho
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since long time, as it describes the dynamics of many o
dimensional disordered systems@8#; in particular, Eq.~2!
was first considered in solid-state physics to study locali
tion of electron energy states in disordered one-dimensio
crystals in the tight-binding approximation~Anderson local-
ization @7#!. The positiveness of the Lyapunov exponent~3!,
which in the Anderson model corresponds to exponential
calization of electronic states, in our context is the condit
for geometric instabilityof the periodic sequence. In a dif
ferent but closely related perspective, the dynamics of the
sloper n8 in a stochastically perturbed periodic sequence
be shown to be analogous to that of displacement of a lin
harmonic oscillator with unitary mass and angular frequen
in which the stochastic perturbatione f (n) causes a periodic
and instantaneous variation of the momentum with a per
equal tof0 . In fact, if one considers a periodically kicke
harmonic oscillator described by the HamiltonianH(x,p)
5(1/2)(p21x2)1(1/2)x2(neg(n)d(t2nf0), wheref0 is
the period of kicks andeg(n) their amplitudes, after integra
tion of the equations of motion in the intervalt5nf0 , t
5(n11)f0 one obtains for the mass displacementsxn
5x(nf0) at timest5nf0 the same equation as given in E
~2! with f (n)52g(n)sinf0 ~for details see Refs.@10#, @11#!.
In absence of perturbations (e50), any ray periodically os-
cillates close to the optical axis in the same way as the m
displacementxn oscillates around its equilibrium position; i
this casel50 and the system is stable. The successive ki
may, however, destroy the coherent ray oscillations lead
to a positive asymptotic growth that corresponds, for
Hamiltonian system, to divergence of the trajectory in t
phase space~x, p!. The positiveness of Lyapunov exponent
case of not correlated disorder, i.e., whene f (n) are indepen-
dent and equally distributed random variables with ze
mean, is a very general result that follows basically from
ergodic theorem by Furstenberg for the product of an
creasing number of random independent matrices@12#. How-
ever, the derivation of an explicit expression forl is a chal-
lenging task requiring the determination of some invaria
distribution functions that are solutions of integral equatio
for a detailed discussion of this problem and analysis of
act and perturbative techniques for the determination of
exponential growth rate we refer the reader to specific wo
@8,9,13,14#. Here we just mention that a quite general expr
sion for l has recently been derived in Ref.@9# by consider-
ing the Hamiltonian map associated to the harmonic osc
tor with periodic kicks; it reads,

l5
1

2 E dhP~h!E
0

2p

dur~u!ln@D~h,u!#, ~4!

where D(h,u)[12h@sin(2u)/sinf0#1h2(sinu/sinf0)
2,

P(h) is the probability density of the distribution ofe f (n),
andr~u! is the invariant measure of the one-dimensional m
for the phaseu5atan(x/p). In particular, for a relatively
strong disorder or for weak disorder (e→0) far from both
band edges cosf0561 and band center cosf050 of stabil-
ity region, the phaseu undergoes strong rotation and th
invariant phase measure can be taken almost uniform,
r(u)51/2p. In such cases, one can explicitly derive an e
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 65 027601
pression forl after integration of Eq.~4!, once the probabil-
ity densityP(h) is assigned. We also mention that positiv
ness of Lyapunov exponent may occur as well in
presence of correlated disorder, though this is not always
case@10#.
As an example, we studied ray propagation in the irregula
spaced sequence of lenses shown in Fig. 1~b!, assuming that
the lens spacing deviationsen from the mean distanceL are
independent stochastic variables uniformly distributed
tween2L/2 andL/2. In this case, one hasA512L/ f , B
5L, C521/f , D51, ande f (n)52en21 / f ; stability of the
unperturbed periodic lensguide is ensured forL,4 f . Figure
2~a! shows an example of the evolution of light rays in t
phase plane (r n ,r n8), as obtained by direct numerical integr
tion of Eq. ~1! with initial conditionsr 151, r 1851. The di-
vergence of the trajectory in the phase plane is clearly sh
in Fig. 2~b!, where the behavior ofln5(1/2n)ln(rn8

21rn1182 )
is depicted which provides an estimate of Lyapunov ex
nent asn→`. The horizontal dashed curve in Fig. 2~b! is the
value of Lyapunov exponent, as calculated from Eq.~4!, as-
suming a uniform invariant phase measure@r(u)51/2p#
and a uniform distribution function forP(h); in this case an
analytical calculation of integrals in Eq.~4! is possible and
yields l5(1/2)ln(11a2)1(1/a)atan(a)21, where a
[L/(4 f sinf0).
The above analysis was based on simple ray optics prop
tion, which can be applied when finite aperture effects
negligible and ray matrix elements are real valued. It is
pected, however, that the asymptotic divergence of rays
duced by disorder will be prevented when finite apertures
the optical systems are properly taken into account. We
prove this property analytically by considering wave prop
gation in a periodic sequence of optical elements contain
soft apertures with a Gaussian amplitude transmission in
transverse plane that mimic the effects of finite aperture
optical elements. In this case, wave propagation through
chain can be described in terms of complexABCD matrices
by means of generalized Huygens integrals@3# or by use of
the generalized complexQ parameter as defined in Ref.@15#.
Since we are interested in the stability property of the p

FIG. 2. ~a! An example of diverging trajectory in the phas
space (r n ,r n8) of light rays propagating through the disordered p
riodic lensguide of Fig. 1~b!. Parameter values areL51, f /L
51.0877~corresponding tof051!, L/L50.2. ~b! Corresponding
behavior ofln versusn. For the sake of clarity in~a! the trajectory
is limited to n up to 8000. The dashed horizontal line in~b! is the
value of Lyapunov exponentl as calculated by Eq.~4!.
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odic chain, we adopt here the latter method, which is simp
involving simple algebraic relations between complexQ pa-
rameters at successive planes along the chain. In fact, for
paraxial field we can introduce a complex parameterQ as in
Ref. @15# that evolves according to theABCD law,

Qn115
AnQn1Bn

CnQn1Dn
, ~5!

whereQn is the value ofQ taken at the planezn . The beam
size W can be derived from the complexQ parameter by
means of the simple relationW252M2l0 /p Im(1/Q),
wherel0 is the wavelength of the optical field andM2 is the
beam quality factor~M251 for a Gaussian beam!. The
propagation law~5! thus rules out the confinement properti
of the periodic chain forany field distribution. We assume
that the unperturbed periodic system admits of a stable c
fined mode and that this mode is perturbationally stable~see
Ref. @16#; see also Ref.@3#, Chap. 21!. The fixed points of
Eq. ~5! without perturbations are given byQ05(A
2D)/(2C)6 i (1/C)sinf0. We assume that one of these tw
solutions corresponds to a confined and stable mode, i.e.,
Im(Q0).0 ~confinement condition! and Im(f0),0 ~stability
condition!. Such two conditions are, for sure, simultaneou
satisfied in any purely real periodic lensguide~either geo-
metrically stable or unstable! whenever a Gaussian apertu
is periodically inserted into the structure~see Sec. 21.4 o
Ref. @3#!. In this case, any initial field distribution not onl
remains confined during propagation along the perio
chain, but its transverse sizeW asymptotically reaches a sta
tionary valueW0 that is independent of the initial field dis
tribution. To study wave propagation in the perturbed dis
dered chain, it is worth introducing the complexR parameter
at planesz5zn through the relationRn5CQn211Dn21 ; the
evolution equation forRn follows from Eq.~5! and reads,

Rn111
1

Rn
52 cosf01e f ~n! ~6!

FIG. 3. Evolution of normalized beam spot sizeWn /W1 for a
paraxial wave propagating through the disordered periodic le
guide of Fig. 1~b!, as obtained by numerical iteration of Eq.~5!,
with Gaussian apertures for~a! U51/100, and~b! U50; the other
parameter values are the same as in Fig. 2. The initial value for
complexQ parameter is taken equal to that of the stable eigenm
of the unperturbed sequence.
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BRIEF REPORTS PHYSICAL REVIEW E 65 027601
One can prove that the solution to Eq.~6! admits of a regular
expansion in power series ofe and that the asymptotic ex
pansion is uniformly valid with respect to the indexn @17#.
This means that, for small values ofe, the effect of the per-
turbatione f (n) is merely to introduce small deviations ofQ
from Q0 during propagation. As an example, let us consi
again the lensguide of Fig. 1~b! and introduce, close to eac
lens in the sequence, a Gaussian aperture of widthwa . The
introduction of the Gaussian apertures corresponds to
change 1/f→(11 iU)/ f in the ABCD matrix elements,
whereU[l0f /pwa

2 is a dimensionless parameter that pr
vides a measure of the finite transverse size of the lensgu
In Fig. 3~a! we show the evolution of normalized beam sp
sizeWn /W1 versus period indexn, as obtained by numerica
analysis of Eq.~5!, for the same parameter values as in F
02760
r
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-
e.

t
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2 and forU51/100; for comparison, in Fig. 3~b! it is also
shown the corresponding behavior that one would obtain
U50, i.e., in absence of the Gaussian apertures. Notice
in the latter case the beam size is not confined around
steady-state value, which is a signature of the geometric
stability predicted by the ray optics analysis.
In conclusion, we have shown that in stochastically p
turbed periodic optical systems, light rays are always asym
totically diverging despite the stability of the unperturb
sequence and the smallness of perturbation. We have sh
that the onset of geometric instability induced by stocha
perturbations is analogous to that of Anderson localization
disordered systems and related to the divergence of traje
ries in noisy hamiltonian maps describing the dynamics
periodically kicked harmonic oscillators.
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