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Stability of periodic paraxial optical systems
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Based on ray propagation of paraxial geometric optics, we show that any stable periodic paraxial system or
optical resonator becomes unstable in presence of stochastic perturbations of the the periodic sequence along
which the rays are propagated. The exponential divergence with distance of ray displacements from the optical
axis bears a close connection to the phenomenon of Anderson localization in disordered systems. The stability
of the periodic focusing system is restored when finite aperture effects are accounted for and complex paraxial
optics is used to describe wave propagation.
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The study of the propagation of paraxial rays and wavesty induced by the disorder thus corresponds to divergence of
through periodic focusing systems plays an important role irfrajectories of the stochastic Hamiltonian syst¢és-11].
the understanding of basic properties of optical resonatord)/hen the effects of softGaussianapertures are taken into
laser beams, and graded-index fibers. An extended literatugonsideration and complex paraxial wave propagation is con-
exists indeed on this subje¢tor an early review see, for sidered, it is shown that the field remains confined and oscil-
instance, Ref[1]), and detailed treatments, based on thelates around the perturbationally stable eigenmode of the se-
well-known ABCD matrix propagation method of paraxial quence.
ray and wave optics, can be found nowadays in many textWe consider ray and wave propagation through a discrete
books(see, for instance, Reff2], [3]). In the framework of  periodic focusing system composed of a periodic and aligned
the geometric ray optics, periodic paraxial systems withsequence, at planes,,z,,...,z,,..., of a geometrically
purely real ray matrices are classified as either stable or urstable optical system, consisting of several paraxial elements
stable, depending on the value of the semitrate D)/2 of  (such as lenses, spherical dielectric interfaces, free-space
the ABCD matrix for the single sequence. A system is stablgpropagation, ducts, ej¢.with an unperturbed ray matrix
for |JA+DJ|<2; in this case the rays in the system oscillateABCD. A notable example is represented by an optical reso-
back and forth about the optical axis, and the maximum exhator, where the back and forth ray propagation between the
cursions of ray displacemeny and ray slope/, from optical ~ two cavity mirrors mimics the propagation through an iter-
axis are bounded. Conversely, a system Wah-D|=2 is  ated periodic focusing system that repeats indefinitely the
unstable and rays become more and more dispersed from tg€duence of optical elements inside the resonator. As we al-
optical axis, the further they pass through the sequencdoW for small perturbations of matrix parameters from one
Through this simple classification scheme, the focusind?lock to the next, we denote b,, B,, C,, andD,, the
properties of a stable system may be, nevertheless, drasfpatrix elements of thath block in the chain and assume that
cally modified when effects of perturbations of optical ele-they are uniformly bounded with index[see Fig. 1a)]. In
ments, albeit small, are taken into account. In particular, i€ase of ray propagation inside an optical resonator, the index
was shown that misalignment effects of the optical elements o o,
in a periodic system may lead to secular growth of ray dis- (a) (0% g s
placement from optical axis during propagation, making the A B\ (4 B, Optical A B,
system unstabl¢3-5]. This circumstance has been espe- C, D, [Cz D, Axis [c D S
cially investigated in case of continuous lensguides that de-
scribe, e.g., curved or tilted graded-index fibE3sb]. Even
in the absence of misalignment effects, it was recently shown
[6] that periodic or quasiperiodic perturbations ofABCD f
matrix elements in a periodic paraxial stable system can lead ﬁ
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to secular growth of ray displacements owing to a parametric | Optical .
resonance effect. Axis z
In this paper, we study the effects of stochastic perturbations

of ABCD matrix elements in a periodic paraxial stable sys- g Lo, Lo , L,
tem and show that, owing to a rather general phenomenon ! z s " e

analogous to Anderson localization in disordered systems giG. 1. (a) Schematic representation of ray propagation through
[7,8], the Lyapunov growth rate of ray displacement is posi-a periodic optical system with modulated parametéss.An ex-

tive, which is a signature of instability. Under a different ample of a disordered periodic lensguide composed of a sequence
viewpoint, the dynamics of ray propagation as ruled byof lenses of focal lengthplaced at distancds,=L +¢,. The con-
paraxialABCD ray matrices turns out to be analogous to thatdition L<4f is assumed to ensure geometric stability of the unper-
of a periodically kicked harmonic oscillator, and the instabil- turbed periodic lensguide.
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n denotes the cavity round-trip number, and perturbation okince long time, as it describes the dynamics of many one-
matrix elements may account for time variation of resonatodimensional disordered systermi8]; in particular, Eq.(2)
parameters, such as moving mirrors or time-varying lensesvas first considered in solid-state physics to study localiza-
In the following, we will focus our attention mainly on the tion of electron energy states in disordered one-dimensional
case where the matrix eleme@talong the chain is not per- crystals in the tight-binding approximatidAnderson local-
turbed; this case applies, for instance, to any repeated sezation[7]). The positiveness of the Lyapunov exponés)t
guence of aligned optical elements, including lenses, dieleowhich in the Anderson model corresponds to exponential lo-
tric interfaces, and ducts that are irregularly spaced along thealization of electronic states, in our context is the condition
chain. A notable example, shown in Fig(b}, is that of a for geometric instabilityof the periodic sequence. In a dif-
chain of lenses, of focal length irregularly spaced at dis- ferent but closely related perspective, the dynamics of the ray
tancesL,=L + ¢,, whereL is the mean separation distance sloper/, in a stochastically perturbed periodic sequence can
ande, are stochastic variables with zero mean. Light propabe shown to be analogous to that of displacement of a linear
gation through the chain can be described in terms of eithefiarmonic oscillator with unitary mass and angular frequency
ray or wave propagation by use of the well-known ray matrixin which the stochastic perturbatiar(n) causes a periodic
techniques and generalized Huygens integrids3]. Let us  and instantaneous variation of the momentum with a period
first consider the simplest ray propagation based on geomegqual to¢,. In fact, if one considers a periodically kicked
ric optics rules; this approach may be used whenever thearmonic oscillator described by the Hamiltoniat(x,p)
matrix elements along the chain are real valued, i.e., when-(1/2)(p?+x2) + (1/2)x2Z ,eg(n) 5(t—n¢y), Where ¢, is
transverse gain or loss variations in the system are neglihe period of kicks angg(n) their amplitudes, after integra-
gible. In this case, any light ray propagating along the chainjon of the equations of motion in the intervekndg,, t

is characterized by its ray displacemeptand ray slopeg), =(n+1)¢, one obtains for the mass displacemenis
from the optical axis at plane=z, [see Fig. 18)]; in the  =x(n¢,) at timest=ng¢, the same equation as given in Eq.
paraxial approximation, these evolve according to the simpl€2) with f(n) = —g(n)sin ¢, (for details see Ref$10], [11]).
linear mapping rulg1-3] In absence of perturbationg£0), any ray periodically os-
, cillates close to the optical axis in the same way as the mass
Mn+1=Anrnt+Bnry, 1) displacemenk,, oscillates around its equilibrium position; in

rhe1=Cpln+Dalp- this case\ =0 and the system is stable. The successive kicks
_ o . . may, however, destroy the coherent ray oscillations leading
The optical sequence is said to geometrically stablé any o a positive asymptotic growth that corresponds, for the
initial paraxial ray propagates along the chain remainingqamiltonian system, to divergence of the trajectory in the
close the optical axis, i.e., if Lim Syp..|r|,[ry[<=. For  phase spac&, p). The positiveness of Lyapunov exponent in
the unperturbed periodic chain, the geometric stability critecase of not correlated disorder, i.e., whefign) are indepen-
rion is readily derived by, e.g., direct calculation of the ma-dent and equally distributed random variables with zero
trix elements for the cascading pfblocks using Sylvester's mean, is a very general result that follows basically from an
theorem and by an inspection of the asymptotic behavior oérgodic theorem by Furstenberg for the product of an in-
matrix elements as goes to infinity{ 1]; it then turns out that  creasing number of random independent matri¢€s How-
stability for the unperturbed periodic chain is ensured, proever, the derivation of an explicit expression fois a chal-
vided that the angle,, defined by the relation cag,=(A  lenging task requiring the determination of some invariant
+D)/2, is real valued, i.e., fofA+D|<2. To study the sta- distribution functions that are solutions of integral equations;
bility for the perturbed periodic chain, it is worth deriving a for a detailed discussion of this problem and analysis of ex-
second-order linear difference equation describing propagaact and perturbative techniques for the determination of the
tion of the ray slope |, solely; assumindC,, to be indepen- exponential growth rate we refer the reader to specific works
dent ofn and using the identith,D,—B,C,=1, from Eq. [8,9,13,14. Here we just mention that a quite general expres-

(1) one readily obtains sion for\ has recently been derived in R§®] by consider-
, / , / ing the Hamiltonian map associated to the harmonic oscilla-
Mne1Tno1=2 COSor,+ef(n)ry,. (2 tor with periodic kicks; it reads,

where ef(n)=A,,_;—A+D,—D accounts for the disorder 1 2m

in the chain. The ray displacementcan then be calculated, A= Ef d7P(7) fo d6p(6)In[D(7,6)], (4)
if needed, according tor,=(r;,;—D,/)/C. The

asymptotic growth rate for the ray slopgcan be derived by where D(#,6)=1— g[sin(26)/sin ¢o]+ 7A(Sin AIsin ¢)?,
evaluation of the Lyapunov exponenfor the discrete equa- P(7) is the probability density of the distribution eff(n),

tion (2), which is given by andp(#) is the invariant measure of the one-dimensional map
1 for the phased=atani/p). In particular, for a relatively
A= lim ﬁln(r,’ﬁﬁr,ﬂz). 3) strong disorder o_r for weak disordee-(-0) fzir from bo-th
N—soo band edges cas,=*1 and band center ca%=0 of stabil-

ity region, the phas& undergoes strong rotation and the
The properties of the discrete equati®) in presence of invariant phase measure can be taken almost uniform, i.e.,
stochastic disordesf (n) has been studied by several authorsp(6) =1/27. In such cases, one can explicitly derive an ex-
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FIG. 2. (a) An example of diverging trajectory in the phase
space (,,r;) of light rays propagating through the disordered pe-
riodic lensguide of Fig. (). Parameter values are=1, f/L
=1.0877(corresponding tapy=1), A/L=0.2. (b) Corresponding
behavior of\ , versusn. For the sake of clarity itfa) the trajectory
is limited to n up to 8000. The dashed horizontal line(i) is the
value of Lyapunov exponeix as calculated by Ed4).

FIG. 3. Evolution of normalized beam spot si#é, /W, for a
paraxial wave propagating through the disordered periodic lens-
guide of Fig. 1b), as obtained by numerical iteration of E®),
with Gaussian apertures f@a) © =1/100, andb) © =0; the other
parameter values are the same as in Fig. 2. The initial value for the
complexQ parameter is taken equal to that of the stable eigenmode

pression for after integration of Eq(4), once the probabil- ©f the unperturbed sequence.

ity density P is assigned. We also mention that positive- . L
nﬁss of yLyz(;lgzmov exgponent may occur as weﬁ in theOd'C chain, we adopt here the latter method, which is simpler

presence of correlated disorder, though this is not always th&V0lving simple algebraic relations between comp@pa-
case[10]. rameters at successive planes along the chain. In fact, _for any
As an example, we studied ray propagation in the irregularParaxial field we can introduce a complex paramees in
spaced sequence of lenses shown in Fib), assuming that Re'-[15] that evolves according to theBCD law,

the lens spacing deviatiore, from the mean distance are A,Q.+B
independent stochastic variables uniformly distributed be- nH:M,
tween —A/2 and A/2. In this case, one had=1—L/f, B CnQnt+Dp
=L, C=-1/f, D=1, andef(n) = —¢,_,/f; stability of the .

unperturbed periodic lensguide is ensuredlfer4f. Figure WhereQ, is the value ofQ taken at the plane,. The beam
2(a) shows an example of the evolution of light rays in the Sizé W can be derived from the comple@ parameter by

phase planer(,,r}), as obtained by direct numerical integra- Méans of the simple relatioW? = - Mz?‘O/W Im2(1/Q),
tion of Eq. (1) with initial conditionsr,=1, r;=1. The di- wherel g is the wavelength of the optical field aidi is the

. 2_ .
vergence of the trajectory in the phase plane is clearly showneam qqahty factor(M*=1 for a Gaus§|an beamThe.
in Fig. 2(b), where the behavior of = (1/2n)In(r/2+r'2 propagation law5) thus rules out the confinement properties

is depicted which provides an estimate of Lyapunov expo—Of the periodic chain forany field distribution. We assume

. AR that the unperturbed periodic system admits of a stable con-
nent as-—c. The horizontal dashed curve in Figh2is the fined mode and that this mode is perturbationally stésée
value of Lyapunov exponent, as calculated from &, as- Ref. [16]: see also Ref(3], Chap. 21 The fixed points of
suming a uniform invariant phase measuigg 6) = 1/27] ' ' ' b 22 b

i C . N Eq. (5 without perturbations are given byQ,=(A
and a.umform d'St.”bUt'on functlon_fd?(n),. in this casean D)/(2C) =i (1/C)sin¢y. We assume that one of these two
analytical calculation of integrals in E¢4) is possible and

. - 2 ” solutions corresponds to a confined and stable mode, i.e., that
ﬁ?lﬁaf )gi;((f)l)/Z)ln(Ha )+(a)atan@) =1,  where « Im(Qu)>0 (confinement conditionand Im(gpy)<<0 (stability
= o)

. . . condition. Such two conditions are, for sure, simultaneously
The abo.ve analysis was based on ?'f“p'e ray optics Propagdasiistied in any purely real periodic lensguitither geo-
tlon,_vyh|ch can be app_lled when finite aperture effec‘gs aremetrically stable or unstablevhenever a Gaussian aperture
negligible and ray matrix elements are real valued. It is s periodically inserted into the structufeee Sec. 21.4 of
pected, however, that the asymptotic divergence of rays inz N

; i o ef. [3]). In this case, any initial field distribution not only
duced by disorder will be prevented whgn finite apertures OFemains confined during propagation along the periodic
the optical systems are properly taken into account. We can

rove this property analvtically by considering wave bro a_chain, but its transverse siX¥ asymptotically reaches a sta-
b Property y y oy 9 prop tionary valueW, that is independent of the initial field dis-

gation in a periodic sequence of optical elements containingr. . S .
: : . o ibution. To study wave propagation in the perturbed disor-
soft apertures with a Gaussian amplitude transmission in th T ; 4
transverse plane that mimic the effects of finite apertures o ered chain, it is worth mtroduc_:lng the complparameter
t planez=z, through the relatiolr,=CQ,_;+D,_4; the

optical elements. In this case, wave propagation through tha . .
cﬁain can be described in terms of cgmgléCD matricegs evolution equation foR, follows from Eq.(5) and reads,
by means of generalized Huygens integf@kor by use of 1
the generalized compleQ parameter as defined in R¢L5]. Rn+1+t 5 =2 cosgp+ ef(n) (6)
Since we are interested in the stability property of the peri- Rn

®)
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One can prove that the solution to Ef) admits of a regular 2 and for© =1/100; for comparison, in Fig.(B) it is also
expansion in power series efand that the asymptotic ex- shown the corresponding behavior that one would obtain for
pansion is uniformly valid with respect to the inde{17].  ©=0, i.e., in absence of the Gaussian apertures. Notice that
This means that, for small values afthe effect of the per- in the latter case the beam size is not confined around its
turbationef(n) is merely to introduce small deviations @  steady-state value, which is a signature of the geometric in-
from Q, during propagation. As an example, let us considerstability predicted by the ray optics analysis.

again the lensguide of Fig(l) and introduce, close to each In conclusion, we have shown that in stochastically per-
lens in the sequence, a Gaussian aperture of widthThe  turbed periodic optical systems, light rays are always asymp-
introduction of the Gaussian apertures corresponds to thtically diverging despite the stability of the unperturbed
change 1f—(1+i0©)/f in the ABCD matrix elements, sequence and the smallness of perturbation. We have shown
whereez)\of/frwf1 is a dimensionless parameter that pro-that the onset of geometric instability induced by stochastic
vides a measure of the finite transverse size of the lensguidperturbations is analogous to that of Anderson localization in
In Fig. 3(a@) we show the evolution of normalized beam spotdisordered systems and related to the divergence of trajecto-
sizeW,, /W, versus period inder, as obtained by numerical ries in noisy hamiltonian maps describing the dynamics of
analysis of Eq(5), for the same parameter values as in Fig.periodically kicked harmonic oscillators.
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hierarchy of equations for successive correction®tds ob-
tained. The solution to the equation at leading order is attracted
toward the stable fixed point exgf), so that we may assume
R(®=exp(dy). This is becausep, is complex valued with
Im(¢)<0. The equations at higher ordess=1 then read
R, =exp(—2i p)RP+a,,, whereo, depends on solutions at
previous orderse,,=exp(—igo) f(NRE Y +exp(igy) =i 1RY
xR ¥ The solutions to these equations are givenRYy
=30" %oy exd —2igo(n—k—1)]. It is easy to show that, {fo,}

is bounded, thedR(®} is also bounded with respect to the
indexn. Since, alO(¢€), o,=f(n) is bounded for definiteness,
for recurrence it then follows th®(® is bounded at any order
~ €% and the asymptotic expansion is uniformly valid with re-
spect to the index.



